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Budding of crystalline domains in fluid membranes
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Crystalline domains embedded in fluid membrane vesicles are studied by Monte Carlo simulations of
dynamically triangulated surfaces and by scaling arguments. A budding transition from a caplike state to a
budded shape is observed for increasing spontaneous curvatureC0 of the crystalline domain as well as
increasing line tensionl. The location of the budding transition is determined as a function ofC0 , l, and the
radiusRA of the crystalline domain. In contrast to previous theoretical predictions, it is found that budding
occurs at a value of the spontaneous curvatureC0, that is always a decreasing function of the domain sizeRA .
Several characteristic scaling regimes are predicted. The distribution of five- and sevenfold disclinations as the
budding transition is approached is determined, and the dynamics of the generation of defects is studied.
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I. INTRODUCTION

The primary new feature in two-component—compar
to single-component—fluids is the possibility of phase se
ration. Canonically, mixtures have a lower miscibility ga
that is, the system is homogeneously mixed at high temp
tures, but demixes at low temperatures into two coexist
phases that are enriched in one of the two components. H
ever, upper miscibility gaps and closed coexistence lo
also exist, typically in systems in which the hydrophob
effect is important. The inverted phase behavior of these
tems is due to the orientational degrees of freedom of
water molecules, which are distributed isotropically at hi
temperatures, but have a preferred orientation in the ne
borhood of polar solutes.

It is therefore natural to expect phase separation in t
component amphiphilic membranes. Indeed, phase sep
tion in Langmuir monolayers at the water-air interface h
been well documented for many years, and has been in
tigated in considerable detail@1,2#. However, in bilayer
membranes, phase separation turns out to be much more
ficult to observe. Initial evidence showed gel-fluid coexi
ence in some systems@3#, while fluid-fluid coexistence re-
mained elusive for a long time. Only very recently ha
experiments using three-component membranes reve
very clear and convincing evidence for both gel-fluid@4,5#
and fluid-fluid @6,7# coexistence.

The coupling of phase separation and membrane shap
flexible bilayer membranes opens the possibility for the b
ding of domains@8,9#. The physical mechanism of this phe
nomenon is the competition between the line tension ene
of the phase boundary and the curvature energy of the m
brane. Since the curvature energy is scale invariant, so
the curvature energy of a spherical vesicle is independen
the vesicle radius, and the line tension energy is proportio
to the domain perimeter, i.e., to the domain radius, it is i
mediately clear that a budding transition occurs when
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domain radiusR is on the order ofk/l, wherek is the bend-
ing rigidity andl is the line tension. Similarly, a membran
patch with spontaneous curvatureC0 has a budding transi
tion at R;1/C0.

The coexistence of two phases in biological membra
has also received considerable attention recently. The e
tence of ‘‘lipid rafts’’ @10# may indeed play an important rol
in the control of the activity of membrane proteins. Anoth
kind of two-phase coexistence in biological membranes
curs when domains of adsorbed proteins form spontaneo
A famous, and biologically very important, example is t
adsorption of clathrin molecules on the plasma membr
@11#. Clathrin molecules assemble to form a regular hexa
nal network on the membrane surface@12–14#. By forming
first a coated pit and then a complete bud~see Fig. 1!, these
clathrin coats control endo- and exocytosis, i.e., the form
tion and detachment of small transport vesicles from the
membrane. The formation of clathrin cages is therefore
example of the budding of crystalline membrane patches
bedded in a fluid lipid membrane.

lty
-

FIG. 1. Rounded clathrin-coated pits in normal chick fibrobla
~a!–~d! and coated pits on membrane fragments derived from c
that have been broken open and left inpH 7 buffer for 10 min at
25 °C before fixation and freeze drying~e!–~f!. The width of the
field of view of the individual pictures is 0.4mm. Reproduced from
Ref. @14# by copyright permission of The Rockefeller Universi
Press.
©2003 The American Physical Society05-1
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The main difference between a fluid and a crystall
membrane domain is the in-plane shear elasticity and p
tional long-range order of the crystalline phase. A flat, cr
talline membrane cannot be deformed into a spherical
without the introduction of topological defects. For the g
neric case of a hexagonal lattice symmetry, the crystal c
sists of a network of sixfold coordinated vertices. In th
case, Euler’s theorem requires an excess of exactly 12
fold coordinated vertices~or fivefold disclinations! to form a
spherical cage. A disclination is a topological defect, beca
it cannot be generated locally, but requires the rearrangem
of a large number of lattice sites. An important questio
therefore, is how these fivefold disclinations are genera
inside the crystalline domain. Two principal mechanisms
possible. In the first, theedge-acquisition mechanism, five-
fold disclinations form at the edge of the crystalline doma
and then diffuse into the interior@12#. Diffusion proceeds
through the production of a series of dislocations, which c
sist of nearest-neighbor pairs of five- and sevenfold discli
tions. In the second, theinterior-acquisition mechanism, dis-
location pairs are generated in the interior of the crystall
patch. Each of these dislocations subsequently dissoci
leaving the fivefold disclination in the interior of the patc
while the sevenfold disclination diffuses to the doma
boundary. Another possibility has been suggested for clat
networks, in which fivefold coordinated sites are form
through the addition of clathrin dimers to the interior
clathrin domains@15#.

The interior-acquisition mechanism has been studied
detail by Mashl and Bruinsma@16#. They argue that budding
occurs via dislocation unbinding, driven by changes in
spontaneous curvature of the clathrin and associated
membrane assembly. Mashl and Bruinsma estimate the
vature and stretching energies of a fivefold disclination in
center the domain and a sevenfold disclination at distancr.
With increasingC0, the minimum of their free-energy ansa
was found to move to larger values ofr, until r 5RA is
reached at a critical value of the spontaneous curvature.
disclination unbinding allows the sevenfold disclination
move to the edge of the network, leaving behind the fivef
disclination at the center. In this approach, budding occ
for R;C0, which, surprisingly, is theinverseof the result
for fluid membranes.

In this paper we present the results of a detailed stud
the budding of crystalline domains in fluid membra
vesicles, using both Monte Carlo simulations and scaling
guments. The membrane is described using a network mo
and the location of the budding transition is determined a
function of the spontaneous curvature of the crystalline
main, C0, the tension of the line separating the crystalli
and fluid domains,l, and the radiusRA of the crystalline
domain. The outline of the paper is as follows. The mo
and simulation technique is described in Sec. II. Simulat
results for vesicle shapes, number and distribution of defe
and the budding phase diagram are presented in Sec. III,
it is shown that the budding transition occurs at a dom
size RA which is always adecreasingfunction of the the
spontaneous curvatureC0 for the range of parameters con
sidered. Analytical estimates for the line budding transitio
06190
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as a function of the Young modulus, the bending rigidity, a
the line tension are presented in Sec. IV. Four different s
ing regimes are predicted, depending on the relative imp
tance of the bending and stretching energies and on the
main size. A critical discussion of the analysis of Ref.@16# is
also presented. Results for the dynamics of the budding t
sition are presented in Sec. VI. The paper closes with a b
discussion of the budding of clathrin-coated membranes.

II. MODEL AND SIMULATION METHOD

A. One-component membranes

For our Monte Carlo simulations of crystalline domains
fluid membranes we employ a tether-and-bead model of s
avoiding membranes@17#. The model consists ofN vertices
which are connected by tethers to form a triangular netwo
Each vertex is the center of a hard sphere of diameters0
51. The tethers do not restrict the motion of connec
beads for distances smaller than the tether length,0, but do
not allow the distance to exceed,0. A Monte Carlo step then
consists ofN attempted positional updates with displac
ments chosen randomly in the cube@2s,s#3. For tether
length ,0,A3s0 and sufficiently small step sizess, this
model mimics self-avoiding membranes, since the larges
lowed space between the beads is too small for other be
to penetrate the membrane. In addition, in order to allow
diffusion and fluidity within the membrane, the connectivi
of the network must itself be a dynamic variable. This
usually achieved by cutting and reattaching the tethers c
necting the four beads of two neighboring triangles in suc
way that the two beads which were not connected before
linked by a tether after the flip. A Monte Carlo step al
involvesN attempted bond flips.

Tether-and-bead models have been used very success
to study the shape and fluctuations of fluid vesicles@18,19#,
the passage of vesicles through narrow pores@20#, and the
budding dynamics of multicomponent fluid membranes@21#.
In the current context, it is particularly interesting that it h
been demonstrated that tether-and-bead models can be
to study the freezing transition of both planar@22# and flex-
ible @23# membranes, as well as of flexible vesicles@24,25#.
In order to induce crystallization of the membrane, no mo
fication of the model is necessary. Instead, crystallization
curs automatically when the tether length becomes su
ciently small.

In the thermodynamic limit of very large networks, th
fluid phase has been found to be stable for,0 /s0.1.52@22#.
The freezing transition proceeds in two steps, from the fl
phase to a hexatic phase with quasi-long-range bond or
tational but short-range translational order, and then to
crystalline phase with quasi-long-range translational order
agreement with theoretical expectations@26#. The hexatic
phase is stable within a narrow range of tether lengt
1.48,,0 /s0,1.52 @22#. For networks of finite size, the
crystalline-to-hexatic and hexatic-to-fluid transitions a
shifted to effectively larger tether lengths. For a netwo
with periodic boundary conditions, the crystalline phase h
been found to be stable for,0 /s0,1.574 forN5100, and
for ,0 /s0,1.545 forN5748 @22#.
5-2
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BUDDING OF CRYSTALLINE DOMAINS IN FLUID MEMBRANES PHYSICAL REVIEW E68, 061905 ~2003!
The shape and fluctuations of fluid membranes are c
trolled by the curvature energy@27#

Hb5
k

2 E dS~H2C0!2, ~1!

wherek is the bending rigidity,H5c11c2 is twice the mean
curvature~with principal curvaturec1 andc2), andC0 is the
spontaneous curvature. For triangulated surfaces, severa
cretizations of the curvature energy have been sugge
@17#. Here we employ the discretization proposed by Itzy
son @28#, which has been shown to work very well for flui
membranes@29#. In this case, the bending energy is given

Hb5
k

2 (
i

s iF 1

s i
(
j ( i )

s i j

, i j
~Ri2Rj !2C0G2

, ~2!

where the sum overj ( i ) is over neighbors of vertexi. In Eq.
~2!, , i j is the distance between nodesi and j located atRi
and Rj , respectively, s i j 5, i j @cot(u1)1cot(u2)#/2 is the
length of a bond in the dual lattice, with anglesu1 and u2
opposite to linki j in the two triangles sharing this bond, an
s i5(1/4) ( j ( i ) s i j , i j is the area of the dual cell of vertexi.

B. Two-component membranes

The shape and fluctuations of two-component fluid me
branes are again controlled by the curvature energy@27#. In
addition, there is a contribution from the line tension of t
domain boundary. The total energy of a two-compon
membrane in the strong segregation limit is given by

H5
kA

2 E dS~H2C0
A!21

kB

2 E dS~H2C0
B!21l R ds,

~3!

wherel is the line tension, and the bending rigiditieskA and
kB and spontaneous curvaturesC0

A and C0
B are in general

different for the two components. We assume for simplic
that the saddle-splay modulusk̄ is the same for both compo
nents, so that the contribution of the Gaussian curvature
constant and does not have to be considered.

The tether-and-bead model has been generalized to m
branes with two fluid components. In this case, the two co
ponentsA andB can be placed either on the surface triang
@21# or on the vertices@30,31#. In the first case, the interac
tions of the two-component mixture can be described by
Ising Hamiltonian, where the binary spin variables descr
the occupation of the triangles with either of the two co
ponents. Since the number of neighboring triangles is alw
3 in this case, the energy of the domain boundary is prop
tional to the number of bonds at whichA and B triangles
meet and is therefore independent of the membrane s
near the domain boundary, as it should be@21#. In contrast,
when the Ising model with vertex occupation variables
used, the interaction energy depends on the number of ne
bors. It is therefore favorable for the system to minimize
number of bonds which connectA andB vertices. Since the
number of neighbors of a site is coupled to the local Gau
ian curvature—with few neighbors implying a positive, a
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many neighbors a negative, Gaussian curvature—the
cretized curvature in combination with an Ising model w
vertex variables may lead to artifacts.

However, it is not difficult to cure this problem with th
vertex occupation variables. All that needs to be done is
use thelengthof the domain boundary instead of thenumber
of bonds connectingA andB vertices. This is very natural in
the Itzykson discretization of the curvature energy, since
variabless i j , which are the lengths of the bonds in the du
lattice, are already calculated anyway. The discretized v
sion of the energy of the domain boundary is

Hl5l (
^ i j &AB

s i j , ~4!

where^ i j &AB denotes the bonds connectingA andB vertices.
We want to study here crystalline domains in fluid me

branes. Therefore, we have to induce crystalline order in
of the membrane by choosing an appropriately small tet
length. This implies that the tether length is not uniform a
depends on the type of the two connected vertices. We ch
two tether lengths,A and ,B for the AA and BB bonds,
respectively, and set,AB5(,A1,B)/2.

In order to complete the definition of the model, we ha
to specify the parameters used in the simulations. We c
sider a membrane with bending rigiditykA5kB5k
510kBT. The tether length of the fluidB component is taken
to be ,B /s051.68, safely above the fluid-to-hexatic trans
tion at ,0 /s051.52. The spontaneous curvatureC0

B van-
ishes. For the crystallineA component, we vary the param
eters in the range 0<C0

A s0<1.0 and 1.45<,A /s0<1.50.
In the following, we useC0[C0

A in order to simplify the
notation. Finally, line tensions in the range 0,l s0

,10kBT are investigated. The simulations are performed
membranes of spherical topology, i.e., for vesicles, in or
to avoid boundary effects and to make sure that the sur
tension vanishes identically. We study three different syst
sizes (NA ,NB)5(92,612), (NA ,NB)5(184,1224), and
(NA ,NB)5(368,2442), so that the total number of vertic
is N5704,N51408, andN52810, respectively. This im-
plies that the fractionxN of the number ofA vertices in the
total number of vertices is constant, withxN50.1307. For
fixed tether lengths, the ratiox5xN(11,A)2/(11,B)2 of
the area of theA component to the total vesicle area is the
fore also constant for the three system sizes. We have ch
a small area fractionx because we want to focus on th
budding transition of an initially~almost! planar domain in a
fluid membrane.

Since one of the interesting applications of our mode
the budding of clathrin-coated pits, we will often denote t
crystallineA domain as the ‘‘clathrin domain’’ in the follow-
ing. This does not imply that we are taking any particu
properties of clathrin molecules into account. To simplify t
notation, all lengths are measured in units of the bead di
eters0 and all energies in units of the thermal energykBT.
5-3
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III. SIMULATION RESULTS: SHAPES, DEFECTS,
AND THE BUDDING TRANSITION

A. Vesicle shapes

A sequence of typical vesicle shapes for fixed sponta
ous curvatureC050.1 is shown in Fig. 2. For small line
tension,l51.5, the crystalline domain takes a caplike sha
Note that the domain boundary shows strong fluctuation
this value ofl, which indicates the vicinity of the mixing
transition of the two components. Forl51.5, the clathrin
vertices remain connected during the length of a typi
simulation run. Forl51.0, however, someA vertices detach
from the clathrin domain and float as monomers inside
fluid membrane. Since we are interested in the strong se
gation regime, we therefore restrict all simulations to valu
of the line tensionl>1.5.

As the line tension increases, the crystalline domain
gins to bend more strongly, while the fluctuations of the d
main boundary decrease. Finally, at 3,l,5, a budding tran-
sition occurs, and the crystalline domain forms a compl
bud.

This scenario is very similar to the budding transition o
served in fluid membrane domains. This can be seen m
clearly in a transverse projection of the vesicle shapes, wh
is shown in Fig. 3. The average shapes strongly resem
those calculated for phase-separated fluid membranes@32#.

B. Defects and budding transition

In order to obtain a more detailed picture of the budd
process, we have calculated several quantities that chara
ize the domain shape and the internal defect structure in
clathrin domain. A typical defect configuration is shown
Fig. 4.

Obviously, the lengthL of the boundary of the clathrin
domain is well suited for characterizing the transition. T
boundary length is shown in Fig. 5 as a function of the sca
line tensionlNA

1/2/k, for several values of the scaled spo
taneous curvatureC0

ANA
1/2. Our motivation for introducing

these scaled variables is that in fluid membranes, all
dependence can be absorbed in these quantities. With
creasing line tension, the curves show a rapid decreaseL
for small l due to the suppression of thermal fluctuation
and then a slow decay as the cap slowly curves m
strongly for largerl. Finally, L jumps to a very small value

FIG. 2. ~Color online! Snapshots of typical vesicle shapes f
,A51.50,NA5184, andC0

A50.1, with ~a! l51.5, ~b! l53.0, and
~c! l55.0. Black lines indicate bonds betweenA vertices.
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which indicates the first-order nature of the budding tran
tion. This jump is large for small spontaneous curvatures
becomes smaller with increasingC0. For C0

ANA
1/2*4.0, the

cap phase is not stable for our value ofk510kBT. A com-
parison of the results for the scaled boundary length sho
in Fig. 5 indicates that, for a given scaled spontaneous
vatureC0

ANA
1/2, the transition occurs at very similar values

lNA
1/2/k for the system sizes studied.
The bending of the initially almost flat crystalline doma

is only possible when an excess of fivefold disclinations
pear inside the domain. We distinguish between crystal
vertices at the boundary of the domain, which have at le
one fluid vertex as a nearest neighbor, and crystalline ve
ces in the interior, which have only other crystalline vertic
as nearest neighbors. The excessD5,i of fivefold coordinated
vertices in the interior, i.e., the number of all fivefold coo
dinated vertices minus the number of all sevenfold coor
nated vertices in the interior, is shown in Fig. 6. This exce
is again quite small,D5,i&3, in the cap phase for smallC0,

FIG. 3. ~Color online! Rotationally averaged vesicle shapes f
,A51.50,NA5184, withl52.0 and~a! C0

A50.0, ~b! C0
A50.1, and

~c! C0
A50.2. Black lines indicate bonds betweenA vertices.

FIG. 4. ~Color online! Typical defect configuration forNA

5368, ,A51.50, k510, l52.0, andC050.1. The picture shows a
top view of the crystalline domain; the fluid part of the membrane
not shown. fivefold and sevenfold coordinated vertices are mar
by squares and circles, respectively.
5-4
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BUDDING OF CRYSTALLINE DOMAINS IN FLUID MEMBRANES PHYSICAL REVIEW E68, 061905 ~2003!
even very close to the budding transition, and approache
in the budded phase, as required by the Euler theorem.

The deviation ofD5,i from 12 in the latter case is due to
small number of defects in the neck region. The defect str
ture in this region can be characterized by the excess
fivefold coordinated vertices at the boundary. Figure 7 de
onstrates that in the cap state, this number is larger for s
l than the excess in the interior. For largerl, but before
budding, the number of excess fivefold disclinations in
boundary and in the interior is almost the same. Finally,

FIG. 5. The boundary lengthL of the clathrin domain for,A

51.50 as a function of the scaled line tensionlANA/k for three
different domain sizes:~a! NA592, ~b! NA5184, and ~c! NA

5368. In all cases, several data sets are shown for different va
of the scaled spontaneous curvatureC0ANA.
06190
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the budded state, the excess becomesnegative, i.e., the num-
ber of sevenfold disclinations now exceeds the number
fivefold disclinations, as should be expected from a region
negative Gaussian curvature.

From these results, we can already draw the import
conclusion that the fivefold disclinations are generated at
domain boundary, before they are pushed slowly into
interior of the domain by the increasing line tension. Sin
the density of fivefold disclinations at the boundary is high
in the cap state than in the interior, the boundary must a
curve more strongly, while the interior remains flatter.

In Fig. 8, we show the numbern5
( iso) of isolated fivefold

disclinations, i.e., of fivefold coordinated vertices, that ha
only sixfold coordinated nearest neighbors. Withn5

( iso)&1
for smallC0, this number is quite small in the cap phase a
jumps to aboutn5

( iso).6 in the budded phase. Since the E
ler theorem requires an excess of 12 fivefold disclinatio
we conclude that only half of these disclinations are isolat
while the other half are dressed by neighboring dislocatio
Figure 8 indicates that for larger system sizes the numbe
dressed fivefold disclinations increases.

Other quantities that characterize the internal order
the crystalline phase are the total number of defects—defi
as the total number of five- and sevenfold coordina

es

FIG. 6. Excess fivefold-coordinated verticesD5,i in the internal
part of the clathrin domain for,A51.50 as a function of the scale
line tensionlANA/k for two different domain sizes:~a! NA592
and ~b! NA5184. In both cases, several data sets are shown
different values of the scaled spontaneous curvatureC0ANA.
5-5
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KOHYAMA, KROLL, AND GOMPPER PHYSICAL REVIEW E68, 061905 ~2003!
vertices—in the interior,S i , and at the boundary,Sb , of the
clathrin domain~see Figs. 9 and 10!. At the budding transi-
tion, the jump in the total number of defects in the interior
quite pronounced. In the cap phase, near the budding tra
tion, the total number of defects minus the number of to
logical disclinations,S i2D5,i , increases roughly as the do
main area~compare Figs. 9 and 6!. On the other hand, in the
budded phase,S i2D5,i increases more rapidly, from about
for NA592 to about 20 forNA5184. Figure 10 demonstrate
that the total number of defects at the boundary is roug
proportional to the boundary length~see Fig. 5!.

The location of the budding transition can be determin
from these simulation data. The dependence of the sc
spontaneous curvatureC0ANA on the scaled line tensio
lANA/k at the budding transition is shown in Fig. 11. Th
transition points were determined from the point of inters
tion of a horizontal line of constant boundary lengthL* with
the interpolated data plotted in Fig. 5.L* has been chosen t
lie approximately halfway between the two values of t
domain lengths at the cap-to-bud transition (L* 520 for NA
592, L* 530 for NA5184, andL* 540 for NA5368).

For all three system sizes, the data are consistent wit

lRA /k1gC0
ARA5G~RA! ~5!

FIG. 7. Excess of fivefold coordinated vertices,D5,b , at the
boundary of the clathrin domain for,A51.50 as a function of the
scaled line tensionlANA/k for two different domain sizes:~a!
NA592 and~b! NA5184. In both cases, several data sets are sh
for different values of the scaled spontaneous curvatureC0ANA.
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at the transition, whereRA is the radius of the planar, circula
clathrin domain, withpRA

252NAA3^,&/4 to leading order,
and average bond length^,&.(11,A)/2 of AA bonds. We
have determinedRA numerically from the area of the clathri
domain. The resulting values ofRA exhibit a weak depen-
dence on the spontaneous curvature and the line tension
the budding transition,RA is found to be about 10% smalle
in the cap phase than in the budded phase. In the follow
we have used the latter value.

In Eq. ~5!, the prefactor of the first term is normalized
unity. The prefactorg of the second term is found to be clos
to unity for the two smaller system sizes studied, w
g50.84, while the functionG(RA) has the values

G~RA!5H 3.3960.02 for NA592, RA56.18,

3.4560.03 for NA5184, RA58.74,

3.6860.05 for NA5368, RA512.4.

~6!

We can therefore draw the conclusion thatG(RA) has only a
weak system size dependence.

n

FIG. 8. The number of isolated fivefold disclinations,n5
( iso) , in

the clathrin domain for,A51.50 as a function of the scaled lin
tensionlANA/k for two different domain sizes:~a! NA592 and~b!
NA5184. In both cases, several data sets are shown for diffe
values of the scaled spontaneous curvatureC0ANA.
5-6
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C. Dependence on the Young modulus

All the data we have presented so far have been calcul
for fixed tether length,A51.50. For the system sizes studie
in the simulation, this tether length is well in the crystallin
phase; however, in the thermodynamic limit, this teth
length is in the center of the hexatic phase. We have th
fore also investigated the behavior for a smaller tet
length,,A51.45, which is well within the crystalline phas
even in the thermodynamic limit. The comparison of the d
for the two tether lengths allows an estimate of the effec
the size of the Young modulus, which characterizes the
plane elasticity, on the defect distributions and on the ph
behavior.

Two characteristic quantities, the boundary lengthL and
the numberD5,i of excess fivefold disclinations in the interio
area are shown in Figs. 12 and 13, respectively. This sh
two qualitative effects with decreasing tether length~i.e., in-
creasing Young modulus!: ~i! the budding transition is shifted
to slightly higher values of the scaled line tension, and~ii !
there are fewer excess defects in the cap phase and
excess defects in the budded phase. A more quantita
analysis of the Monte Carlo data will be made in Sec.
below.

FIG. 9. Total number of defects,S i , in the internal area of the
clathrin domain for,A51.50 as a function of the scaled line tensio
lANA/k for two different domain sizes:~a! NA592 and ~b! NA

5184. In both cases, several data sets are shown for different
ues of the scaled spontaneous curvatureC0ANA.
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IV. ANALYTICAL ESTIMATES OF THE LINE
OF BUDDING TRANSITIONS

The location of the budding transition can be calcula
analytically for some special cases. A comparison of th

al-

FIG. 10. Total number of defects,Sb , at the boundary of the
clathrin domain for,A51.50 as a function of the scaled line tensio
lANA/k for two different domain sizes:~a! NA592 and ~b! NA

5184. In both cases, several data sets are shown for different
ues of the scaled spontaneous curvatureC0ANA.

FIG. 11. ~Color online! Dependence of the scaled spontaneo
curvatureC0ANA on the scaled line tensionlANA/k at the budding
transition, for ,A51.50 for three different domain sizes:NA

592, NA5184, andNA5368.
5-7
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KOHYAMA, KROLL, AND GOMPPER PHYSICAL REVIEW E68, 061905 ~2003!
estimates with our numerical data will lead to a consist
picture of the budding of crystalline domains in vesicles.

A. Fluid domains of spherical shape

Jülicher and Lipowsky@32,33# have calculated the locu
of budding transitions for axisymmetric vesicles consist
of one fluid domain with spontaneous curvatureC0

A embed-
ded in a fluid membrane of spontaneous curvatureC0

B . They
solve the shape equations numerically and thereby determ
the line of budding transitions. They also derive an analyti
estimate for this line by approximating the incomplete b
by a spherical cap and the complete bud by two spheres.
the case ofC0

B50 andkA5kB considered here, this estima
is given by

l

k
R05

2

Ax~12x!
@11C0

AR0~x2Ax!#, ~7!

whereR0 is the radius of a spherical vesicle of the same ar
Equation~7! was found to be a lower bound for the transitio

FIG. 12. ~Color online! The boundary lengthL of the clathrin
domain for,A51.50 and,A51.45 as a function of the scaled lin
tensionlANA/k for domain sizeNA5184 and scaled spontaneou
curvatureC0ANA51.356.

FIG. 13. ~Color online! The number of excess fivefold disclina
tions in the interior of the clathrin domain for,A51.50 and,A

51.45 as a function of the scaled line tensionlANA/k for domain
sizeNA5184 and scaled spontaneous curvatureC0ANA51.356.
06190
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and to approximate the numerically determined line of bu
ding transitions quite accurately. This estimate can easily
adapted to our case. WithR05RA /(2Ax), we obtain

l

k
RA1

12Ax

A12x
C0

ARA54
1

A12x
. ~8!

For xN50.13, which corresponds tox50.104 for ,A
51.50, this implies

l

k
RA10.716C0

ARA54.225. ~9!

Another estimate can be obtained by considering the li
shape of budded vesicles. The limit shape corresponds t
infinitesimal neck, for which Ju¨licher and Lipowsky@32# de-
rived the condition

l

k
RA1C0

ARA5414Ax/~12x!55.363 ~10!

for x50.104. This condition must obviously be an upp
bound for the location of the budding transition.

B. The argument of Mashl and Bruinsma
for crystalline domains

In order to calculate the location of the budding transiti
of a crystalline domain, Mashl and Bruinsma@16# considered
a membrane domain of radiusRA with a fivefold disclination
at the center and a sevenfold disclination at distancer. In this
scenario, the budding transition is determined by the loca
of the unbinding of this dislocation pair. They approxima
the bending energy of thisbuckledconfiguration by

Eb52kC0
ARA L~r /RA!1

p

2
k~C0

ARA!2, ~11!

whereL~0!50 andL(1)52p/A3. For intermediate values
of r /RA , L has to be calculated numerically. The contrib
tion of the stretching energy was estimated to be the ene
of a dislocation of Burgers vectorr in a buckledcrystalline
membrane withC0[0,

Es5K0r 2F 1

8p
ln~Rb /^,&! 1c~ k̄/k!G , ~12!

which was calculated in the limit ofinfinite membrane size
by Seung and Nelson@34#. In Eq. ~12!, Rb is the buckling
radius of a dislocation, andc(k̄/k) depends only on the ratio
of the bending rigidityk and the saddle-splay modulusk̄.
Using the sum of Eqs.~11! and~12! as an ansatz for the fre
energy, Mashl and Bruinsma@16# found that the minimum of
this energy moves continuously fromr 50 to larger values of
r with increasingC0, reaching r 5RA at some value of
kC0

A/(K0RA), which signals the budding transition. This r
sults implies, in particular, thatC0

A;RA at the transition.
We believe that this estimate of the free energy of a bu

led disclination pair is incorrect. This can be seen easily
5-8
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considering the caser 5RA . In this case, the sevenfold dis
clination no longer contributes, and we have a cone wit
fivefold disclination at the center. In the inextensional lim
of largeK0, the total energy can be calculated exactly and
found to be

Econe5pkF11

30
ln ~RA /^,&!22

A11

A30
C0

ARA1
1

2
~C0

ARA!2G
1

p

3
k̄1Ecore ~13!

which essentially agrees with Eq.~11!, up to an additive
contribution with a logarithmic size dependence. In this ca
the stretching energy vanishes, so that Eq.~12! strongly over-
estimates the stretching contribution. The origin of this d
agreement is the fact that Eq.~12! is valid only in the limit
r !RA @34#.

C. Crystalline sphere with disclinations and grain boundaries

Bowick, Nelson, and Travesset@35# have recently calcu-
lated the energy of an icosahedral lattice on a perfect sph
cal surface which contains no defects other than the topol
cally required 12 disclinations. For a sphere of radiusR0, the
elastic energy was found to be

Eico5Cico

pK0

36
R0

2112Ecore ~14!

with Cico50.604, whereK0 is the two-dimensional Young
modulus. For a vesicle with large bending rigidity, i.e., wi
k@K0^,&2, where ^,&5(11,A)/2 is the average bond
length in the clathrin domain, we can use this result to e
mate the position of the budding transition by comparing t
energy with that of a planar patch of the same area, i.e., w
RA52R0. For the sphere, the energy is a sum of the stre
ing energy~14! and the curvature energy~1!. The energies of
the planar and budded configurations are equal when

l

k
RA12C0RA541

Cico

288

K0RA
2

k
112

Ecore

2pk
. ~15!

In order to see whether the stretching term contributes,
have to insert values forK0 and RA that are characteristic
for our simulation. In Ref.@25#, it was shown that the
two-dimensional Young modulusK0 for planar, crystal-
line networks of the type employed in our simulations
creases with decreasing tether length,0. In particular,
the valuesK0^,&2564.8 for ,A51.50 andK0^,&2578.0
for ,A51.45 were obtained@25#. For RA512.5, the
largest domain size considered in the simulations,
implies (Cico/288)K0RA

2/k.1.36 for ,A51.50 and
(Cico/288)K0RA

2/k.1.70 for ,A51.45. For a crystalline
sphere, stretching contributions are therefore subdominan
the right-hand side of Eq.~15! for the range of domain size
investigated.

Bowick, Nelson, and Travesset@35# have shown that shor
grain boundaries at the location of the topological disclin
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tions screen the strain field and lead to a reduction of
energy of a crystalline lattice on a sphere. For grain bou
aries containingn dislocations per disclination,Cico(n) de-
creases from 0.60, 0.44, 0.37 forn50,1,2, respectively, to
Cico(n).0.25 for largen @35#. The effect of the stretching
contribution in Eq.~15! is therefore reduced by grain bound
aries. Indeed, in the configurations shown in Fig. 15 belo
several grain-boundary lines are visible. The data for
total number of defects in the interior of the crystalline d
main shown in Fig. 9 indicate that there is about 0.5 dis
cation per topological fivefold disclination forNA592, and
about 1.5 forNA5184.

D. Crystalline icosahedron without defects

When the two-dimensional Young modulus is sufficien
large, bending is more favorable than stretching, and the
vature is no longer distributed uniformly over the bud@36#.
Instead, the stress becomes localized in ‘‘stretching ridg
which connect the 12 fivefold disclinations. The bud th
takes the shape of an icosahedron with rounded edges
nearly flat faces. For large system sizes, and no defects
yond the topologically required fivefold disclinations, the e
ergy of such a shape was shown from elasticity theory
simulations to be@36–38#

Eteth5
11

5
pk ln S NA

12D1Cteth kS K0

k D 1/6

RA
1/3112Ecore ,

~16!

where the first term is the contribution of the cone-shap
corners and the second of the ridges. The prefactorCteth can
be extracted from simulations of tethered networks@37,38#,
and has been found to beCteth53.63 for icosahedra@38# and
Cteth59.3 for tetrahedra@37#.

It is interesting to note that the simulations of Re
@37,38# show that forC050 the contribution of the cone
shaped corners dominates up to quite large system s
Only for (K0 /k)1/2RA in the range of 500 to 1500 do th
ridges begin to dominate the curvature energy. This can
ily be seen from Eq.~16!, where the contributions of corner
and ridges are equal when

S K0

k D 1/2

RA5F 11p

5Cteth
ln @NA/12#G3

. ~17!

We now compare the free energies of a planar disk an
deformed sphere, which we consider to be composed o
cones. The membrane area of a cone corresponding to a
fold disclination is (6/5)pR0

2. This implies RA
25(72/5)R0

2

and

l

k
RA12A11

10
C0

ARA512
Eteth

2pk
~18!

so thatG(RA) exhibits a logarithmic dependence when t
energy contribution of the cone-shaped corners domina
For large values of (K0 /k)1/2RA , G(RA) is proportional to
RA

1/3.
5-9
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E. Hexatic domains of cone-shape

In crystalline membranes that are larger than the buck
radiusRb of a dislocation, the elastic~curvature and stretch
ing! energy of a free dislocation has been predicted to
proach a constant, independent of system size@34#. This pre-
diction has been confirmed by Monte Carlo simulatio
@24,25# of the same network model that is employed in t
current study. Therefore, the free energy of dislocations
negative for any finite temperature for a sufficiently lar
membrane. This implies that a finite concentration of fr
dislocations is present in the membrane, which destr
translational order. The resulting phase, which still has bo
orientational order, is called a hexatic.

The energyE5 of a cone-shaped membrane in the hexa
phase was calculated in Refs.@39,40#, with the result

E5

pKH
5H 2F S 25

36
1

k

KH
D S 12

k

KH
D G1/2

2
5

3J ln ~R0 /^,&!

~19!

for k/KH,11/72 and

E5

pKH
5

1

36
ln ~R0 /^,&! ~20!

for k/KH.11/72, whereKH is the hexatic stiffness andR0 is
the radius of the base area of the cone. The budding tra
tion is again described by Eq.~18!, with Eteth replaced by
E5. This result implies thatG(RA) exhibits a logarithmic
dependence for sufficiently largeRA .

In order to proceed, we need an estimate of the magnit
of the ratio k/KH . Such an estimate can be obtained
comparing the calculated phase diagram as a functionk
and KH @41# with the phase diagram obtained from Mon
Carlo simulations of our model@24,25#. Since KH is not
known in the simulations, the phase diagram was plotted
function of the Young modulusK0 of a membrane with the
same tether length, but without any defects. The two ph
diagrams have very similar shapes. Therefore, we ass
KH5aK0^,&2, with a proportionality constanta which is
obtained from fitting the location of the hexatic-to-fluid tra
sition, which occurs atkBT/KH5p/7250.0436@41# and at
kBT/(K0^,&2)50.0172@21#. This impliesa50.4. From the
simulation results forK0^,&2 @25#, we then findKH525.8
for ,A51.50 andKH531.2 for ,A51.45. Thus, fork510,
we obtain k/KH.0.39.11/72 and k/KH.0.32.11/72
for ,A51.50 and ,A51.45, respectively. Therefore, fo
our range of simulated tether lengths, 12E5 /(2pk)
5@KH /(6k)# ln (R0 /^,&). This yields a logarithmic depen
dence with a prefactor ofKH /(6k).0.5.

It is interesting to note that renormalization group calc
lations for fluctuating planar membranes predict that the r
KH /k approaches the universal valueKH /k54 in the long-
wavelength limit in the hexatic, ‘‘crinkled’’ phase@41,42#.
Our estimate ofKH /k.3 in the short-wavelength regim
indicates that corrections to scaling can be expected to
small.
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V. DISCUSSION OF BUDDING SCENARIOS

From the various theoretical results described in the p
vious subsections, together with the simulation data, the
lowing picture emerges. The budding behavior depends
the value of the ratioQ5K0RA

2/k, on the buckling radius
Rb /^,&;k/(K0^,&2) of a dislocation, measured in units o
the average nearest-neighbor distance, and on the dist
from the two-dimensional melting transition, which is dete
mined by the value ofK0^,&2. There are various scenario
depending on the values of the buckling radius andK0^,&2.

Two possible scenarios are sketched in Fig. 14. Cons
first the case of large buckling radius and very low def
density, @See Fig. 14~a!#. Then, for small domain size
RA , Q is small, the bud is spherical, and the membrane
crystalline without excess defects. This is the case discus
in Sec. IV C. With increasing size, defect scars in the form
short grain boundaries appear at the location of the 12 fi
fold disclinations. The spherical shape begins to deform i

FIG. 14. Scaling regimes for the functionG, which characterizes
the dependence of the budding transition on the radiusRA ~in units
of the average bond lengtĥ,&! of a planar crystalline domain.~a!
Low defect density and high Young modulus.~b! High defect den-
sity and low Young modulus. ‘‘Spherical’’ denotes the regime
spherical bud shapes, ‘‘cones’’ the regime where the fivefold dis
cations are cone shaped, ‘‘stretching ridges’’ the regime where
competition of bending and stretching leads to stress condens
along the edges of an icosahedron, and ‘‘hexatic’’ the regime wh
free dislocations induce hexatic order in the membrane. In
spherical regime, short grain boundaries reduce the stretc
energy.
5-10
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BUDDING OF CRYSTALLINE DOMAINS IN FLUID MEMBRANES PHYSICAL REVIEW E68, 061905 ~2003!
an icosahedral shape with stretching ridges connecting th
topological disclinations~compare Sec. IV D!. Finally, the
system size becomes so large that the free energy of a
buckled dislocation,

Fdisloc5
1

8p
K0^,&2 ln ~Rb /^,&!2kBT ln ~pRA

2/^,&2!,

~21!

becomes negative and the membrane enters the hexatic p
discussed in Sec. IV E. This happens when

p~RA /^,&!25~Rb /^,&!(1/8p)(K0^,&2/kBT), ~22!

where the exponent on the right-hand side is close to 2 in
vicinity of the crystal-to-hexatic transition for the planar sy
tem, but becomes very large at small tether lengths.

The crossover from the regime of a spherical crystal w
defect scars to the regime of a rounded icosahedron with
defects can be estimated by equating the energies of
~14! and ~16!. This corresponds to

Q5
1584

5Cico
ln S NA

12D , ~23!

where we have assumed that the system is small enough
for the icosahedron the energy is dominated by the contr
tion from the corners. For crystalline domains with smal
values ofQ, the shape should be spherical with defect sca
for domains with largerQ rounded icosahedrons should b
observed. ForN5500, this impliesQ52410. At the cross-
over point, the contribution of the stretching energy in E
~15! roughly equals the contribution of the bending energ

The crossover from the crystalline to the hexatic phas
determined by the ratioRA /Rb of the buckling radiusRb and
the domain size. Foropen membranes with free boundar
conditions, the buckling radius has been calculated in R
@34# to be Rb5J(k̄/k)k/(K0^,&). The scaling function
J(k̄/k) depends on the ratio of the saddle-splay modu
k̄ and the bending rigidityk. The Gaussian-curvature term
in the curvature Hamiltonian has to be taken into acco
for open membranes, since it determines the boundary
ditions. For k̄/k50, where the curvature Hamiltonian be
comes unstable with respect to the formation of sadd
shaped structures with small radii of curvature, the buckl
radius vanishes. Similarly, the buckling radius vanishes
k̄/k522, where the curvature Hamiltonian has an instab
ity toward the formation of small vesicles. In the range22
,k̄/k, fluid membranes with large radii of curvature a
stable, and the buckling radius is finite, with a maximum
k̄/k.20.8 whereJ.125.

For vesiclesor membranes with periodic boundary cond
tions which are characterized by a uniform saddle-sp
modulus, the Gauss-Bonnet theorem indicates that the
gral over the Gaussian curvature is a topological invari
which does not affect the membrane shape and fluctuati
Therefore, the buckling radius cannot depend onk̄ in this
case. However, periodic boundary conditions or the spher
topology of a vesicle can be expected to have a similar c
straining effect on buckling as the most unfavorable value
06190
12

ee

ase

e

h
ut
qs.

hat
u-
r
s;

.

is

f.

s

t
n-

-
g
r
-

t

y
te-
t
s.

al
n-
f

k̄ for open boundaries. We therefore propose that,
vesicles, the value of the buckling radius for open me
branes withk̄52k should be used. For,051.50 andk510,
this impliesRb525.

Consider now a system with a small buckling radius an
high defect density@see Fig. 14~b!#. In this case, for small
domain sizes, we again expect spherical shapes with s
grain boundaries. However, for larger sizes there should b
direct crossover to hexatic membranes.

The main conclusion that can be drawn from the prec
ing analysis is that, in general, we predict aweak size depen
denceof G(RA) in Eq. ~5!, with several distinct scaling re
gimes@43#. In particular, the value of the line tension or th
spontaneous curvature at the budding transition is a decr
ing function ofRA . This result is strongly supported by ou
simulation data. In our simulations,Q5415 for ,A51.50
andRA510. The parameters in the simulations are theref
such that we are in the crossover regime from the crystal
to the hexatic phase: defect scars can be recognized,
buckling radius is on the order of the domain size, t
stretching energy is comparable to the bending energy,
small deviations from the spherical shape are visible.

We can make the comparison of the Monte Carlo data
the analytical estimates morequantitativeby studying the
dependence of the budding transition on the domain s
First, for the Monte Carlo data, the prefactorg of the spon-
taneous curvature term in Eq.~5! is found to beg50.84,
slightly smaller than, but close to unity, in good agreem
with the predictions for fluid vesicles@compare Eqs.~9! and
~10!#. On the other hand, the prefactor of the spontane
curvature term in all our estimates for crystalline and hexa
membranes was found to beg52. However, this can easily
be traced back to the fact that in the latter cases we do
take into account that the cap has a curved shape. Rathe
simply compare the free energies offlat domains and spheri
cal buds. The same approximation would also lead tog52
for fluid domains. We therefore believe that our analytic
results for crystalline and hexatic domains overestimate
prefactor.

Second, we have seen in Figs. 5–10 that the budding t
sition disappears forC0s0NA

1/2.4, which corresponds to
C0RA.2.6. This result can easily be understood on the ba
of Eq. ~5!. For this value ofC0RA , the two sides of Eq.~5!
become equal for a line tensionls0 on the order ofkBT.
The line tension is so small in this case that we are very cl
to the mixing critical point of the two components.

Third, we can compare the dependence ofG(RA) ob-
tained from the Monte Carlo data with the prediction~15!
for crystalline buds with grain boundaries. The numeric
data for ,A51.50 are well described byG(RA)53.28
10.0004K0RA

2/k. The numerical prefactor of the secon
term should be compared withCico(n)/288, which is 0.001
for n52. Since we have additional dislocations in the sim
lated domains due to the vicinity of the hexatic phase, th
two results are in very nice agreement.

An important point we have not discussed yet is the
pendence ofG(RA) on the two-dimensional Young modulu
K0. In the defect-free crystalline phase, Eq.~14! implies a
5-11
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FIG. 15. ~Color online! Snapshots of configu-
rations during the budding process after a quen
from a completely spherical initial state. The pic
tures show a top view of the crystalline domai
the fluid part of the membrane is not show
Fivefold and sevenfold coordinated vertices a
marked by squares and circles, respectively. T
parameters areNA5368, ,A51.50, l52.0, and
C0

A50.2. Snapshots are shown at time~a! t
50.13106, ~b! t50.33106, ~c! t50.53106, ~d!
t513106, ~e! t523106, and ~f! t533106

Monte Carlo steps after the quench.
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linear dependence onK0. With the numbers appropriate fo
our simulations, a change of the tether length from,A
51.50 to,A51.45 implies a shiftDG(RA)50.21. This re-
sult is consistent with the small shift observed in the sim
lations,~see Figs. 12 and 13!.

It is worth mentioning that we would obtain a quadra
RA contribution toG in the regime of crystalline buds whic
is reminiscent of the result of Mashl and Bruinsma@16# if the
contribution of the stretching energy in Eq.~15! were larger
than that of the bending energy. However, it is important
note that~i! the physical origin of this contribution is differ
ent, since in our case, it arises from the stretching of a c
talline cone when it is deformed into a spherical cap, while
comes from the energy of a disclination pair in theirs, and~ii !
the stretching contribution, which is proportional toK0RA

2 ,
can never dominate the bending energy, since the bud be
to deform into an icosahedral shape before this can hap

VI. DYNAMICS OF THE BUDDING TRANSITION

A. Formation of single buds

In Sec. III we studied the shapes, defect distributions,
phase behavior of two-component vesicles in thermal e

FIG. 16. Time dependence of the boundary lengthL of the clath-
rin domain forNA5368, ,A51.50,l52.0, andC0

A50.2. See Fig.
15 for the corresponding configurations.
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librium. Another interesting question is the dynamical beha
ior after the system has been quenched from a state of
ishing spontaneous curvature,C0

A50, to a part of the phase
diagram where single buds are stable. Here, the ques
arises as to how the defects appear dynamically in the cl
rin domain.

Several snapshots of configurations during the budd
process are shown in Fig. 15 for a system withC0

A50.2 after
the quench. The figure demonstrates very nicely that fi
fold and sevenfold disclinations are generated at the dom
boundary, and that the fivefold disclinations then move in
the internal area of the clathrin patch.

The time dependence of the boundary length and the
cess number of fivefold disclinations in the interior of th
clathrin domain are shown in Fig. 16 and Fig. 17, resp
tively. From these figures, the following time regimes can
distinguished.

~i! Fivefold disclinations appear on the boundary a
move into the internal area.

~ii ! The number of excess fivefold disclinations in th
internal area is almost constant, but the shape gradu

FIG. 17. ~Color online! Time dependence of excess fivefold c
ordinated verticesD5,i in the internal area~full line! andD5,b at the
domain boundary~dotted line! for NA5368, ,A51.50,l52.0, and
C0

A50.2. See Fig. 15 for the corresponding configurations.
5-12
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changes until it becomes a half sphere. The boundary le
is decreasing roughly linearly with time.

~iii ! The half sphere quickly changes to a bud with a n
row neck. The boundary length is again decreasing linea
but with a considerably larger slope than in regimes~i! and
~ii !.

~iv! The final budded state is reached.
Note the similarity of the configurations shown in Fig. 1

with the rounded clathrin-coated pits in Fig. 1.

B. Microcages

We can also consider the case of a quench to a stat
large spontaneous curvatureC0

ARA@1, and very small line
tension. The budding process now proceeds very differen
in particular for a large Young modulus~smaller tether
length!. This can be seen in the sequence of snapshots g
in Fig. 18, where small buds are forming near the dom
boundary, while the central region of the domain rema
essentially flat.

The shape of the clathrin domain now evolves as follow
~i! At the beginning, the interior part of the domain r

mains flat, since no defects are present. The mobility of
fects is low for large Young modulus. Therefore, only t
boundary region can curve, which it does. The domain sh
becomes a flattened mushroom.

~ii ! A wavelike instability occurs at the boundary, whic
leads to the formation of many small, spherical buds. Thi
possible because the line tension is very small. This s

FIG. 18. ~Color online! Snapshots of configurations during th
budding process after a quench from an initial spherical state
large spontaneous curvatureC0

AANA@1. The pictures show a top
view of the crystalline domain; the fluid part of the membrane is
shown. Fivefold and sevenfold coordinated vertices are marked
squares and circles, respectively. The parameters areNA5368, ,A

51.435,l51.50, andC0
A51.0. Snapshots are shown at time~a! t

50.033106, ~b! t50.063106, ~c! t50.073106, and ~d! t50.1
3106 Monte Carlo steps after the quench.
06190
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strongly resembles the microcages seen in clathrin dom
after a strong quench inpH ~see Fig. 19!.

~iii ! The state of small buds is not stable, but evolves i
a cylindrical shape with time. The cylindrical structures elo
gate, and the whole clathrin domain is composed of sev
cylindrical structures, which include fluid vertices in som
parts.

~iv! After a long time, several isolated clathrin caps flo
on the fluid membrane.

VII. BUDDING OF CLATHRIN-COATED MEMBRANES

The biochemistry of the budding process in clathr
coated vesicles has been studied in considerable deta
recent years@44–46#. In addition to clathrin, many othe
proteins have been found to play an important role
clathrin-mediated endocytosis. In synaptic vesicle endocy
sis, coat proteins AP2 and AP180 are recruited to the m
brane to bind the clathrin proteins to the membrane@47#. The
invagination of the coated membrane depends on endop
@48#. Narrowing of the neck region may involve several fa
tors, including actin, intersectin, dynamin, and amphiphy
@49#. Finally, fission depends on dynamin, probably in coo
eration with other proteins such as amphiphysin and en
philin @48#.

For the comparison of our results with the formation
clathrin-coated vesicles, it is interesting to determine p
sible mechanisms for the generation of spontaneous cu
ture. Here, endophilin I seems to play an essential role. It
been shown, for example, that in the absence of endophil
the clathrin-coated pit does not transform into a compl
bud @48#. It therefore seems natural to assume that endo
lin induces a spontaneous curvature in the clathrin dom
This view is supported by the fact that after presynaptic m

or

t
y

FIG. 19. Clathrin network with nucleated microcages in chi
cells acidified by nigericin treatment at pH 6.3 for 5 min at 37 °
The nucleated microcages do not contain plasma membrane.
0.2mm. Reproduced from Ref.@14# by copyright permission of The
Rockefeller University Press.
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croinjection of antiendophilin antibodies, the invaginati
process appears to be inhibited in a concentration-depen
manner, as the depth of the coated pits decreases with
creasing antibody concentration@48#. Furthermore, endophi
lin I has been found to convert lysophosphatic acid,
inverted-cone-shaped lipid, to phosphatic acid, a co
shaped lipid in the cytoplasmic leaflet of the bilayer@50#. In
the interior of the clathrin domain, such a conversion wo
imply a spontaneous curvature toward the clathrin side, i.e
negative rather than the desired positive spontaneous cu
ture. However, the latter activity may occur only in the ne
region due to the interaction with dynamin, which forms
ring around the neck. It has been proposed that this induc
negative membrane curvature at the edges of a coated
which promotes membrane fission@50#.

It has also been shown that clathrin-coated buds morp
logically similar to the corresponding structures observed
synaptic vesicles can be generated on protein-free liposo
by incubation with cytosol@51#, which suggests that the pr
mary function of membrane proteins is to act as regula
of coat assembly. Furthermore, Heuser@14# has shown that
both the in vivo acidification of cells as well thein vitro
acidification of exposed clathrin lattices leads to the form
tion of budded microcages which nucleate at the edge
the clathrin network~see Fig. 19!. The resulting structures
are very similar to those shown in Fig. 18 which devel
after a quench from an initially flat state for large sponta
ous curvature. The microcages observed by Heuser@14# are
spherical in shape, with radii on the order of 25–30 nm, a
are small compared to normal coated clathrin pits~compare
Fig. 1!.

VIII. SUMMARY AND CONCLUSIONS

Heuser@14# suggested that the driving force for the fo
mation of clathrin-coated vesicles is the chemical asymm
of the clathrin network. This asymmetry induces a fin
mean curvature in the membrane which depends on thepH
and other environmental conditions. Budding occurs wh
the curvature becomes sufficiently large. In the model c
sidered in this paper, this asymmetry is described by
spontaneous curvature. We have shown that for a large ra
of material parameters, budding in crystalline networks
radiusRA occurs at a critical value of the spontaneous c
vature that is a monotonically decreasing function ofRA . It
was also shown that the disclinations required to form
budded state are created at the boundary of the crysta
patch. Budding occurs when a sufficient number of the
quired fivefold disclinations have been formed and have
fused into the domain interior. For the model parameters
considered, the energies associated with changes in the
structure of the network are of the order ofkBT.

This scenario is quite different from that suggested

@1# H. M. McConnell, Annu. Rev. Phys. Chem.42, 171 ~1991!.
@2# S. L. Keller, W. H. Pitcher III, W. H. Huestis, and H. M

McConnell, Phys. Rev. Lett.81, 5019~1998!.
@3# P. F. F. Almeida, W. L. C. Vaz, and T. E. Thompson, Bioche
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Mashl and Bruinsma@16#. In particular, the dynamical be
havior we observe is not consistent with their type
interior-acquisition model. While Mashl and Bruinsma pr
dict that the formation of fivefold disclinations proceeds v
the unbinding of dislocations in the interior region of th
network, we have found, as summarized in the last pa
graph, that disclinations are formed at the domain bound
before diffusing into the interior.

Furthermore, Mashl and Bruinsma@16# argue that the
~20–30! kBT of energy required for the dissociation of clat
rin coats provides an estimate for the energy needed to b
the bond between the four clathrin arms in a polygonal ed
This would imply that diffusive motion of fivefold and sev
enfold disclinations induced by thermal fluctuations is rath
unlikely. It is still an open question if this is indeed the cas
A recent analysis of the size distribution of reconstitut
clathrin cages suggests that the relevant energy scale
changes in the local structure of clathrin coats is on the or
of kBT @52#. Our present Monte Carlo simulations cover t
range of small bond energies, while our scaling resu
should be applicable also for large bond energies.

The detailed behavior at the budding transition depe
on the value of the ratioQ[K0RA

2/k, the buckling radius of
a dislocation, and the distance from the two-dimensio
melting transition. The various scenarios are discussed
Sec. IV and summarized in Fig. 14. For the current simu
tions, Q'400, so that the transition occurs in the crosso
region from the crystalline to the hexatic phase. In this ca
the buckling radius is on the order of the domain size,
stretching energy is comparable to the bending energy,
short grain boundaries can be seen at the topologically
quired fivefold disclinations.

It remains a formidable challenge to elucidate the vario
mechanisms involved in clathrin-mediated endocytosis
living cells. For this reason, it would be extremely interesti
to perform further studies on the endocytosis of protein-f
liposomes in order to determine the extent to which sim
models of the type discussed in this paper can describe
generic features of formation of clathrin-coated pits. Expe
ments on simple, well characterized systems could be use
conjunction with simulations, as was done in Ref.@19# for
giant synthetic lipid bilayer vesicles, to quantify our unde
standing of the underlying physical mechanism of the b
ding of coated pits.
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